Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius).
نویسندگان
چکیده
The whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) biotype B, is one of the most destructive invasive pests of field and glasshouse crops, and has a high tolerance to heat. Our previous work found that whitefly females are more heat tolerant than males. In the present study, real-time PCR and double-stranded RNA (dsRNA) methods were used to explore the role of heat shock protein (Hsp) genes in whitefly of both sexes; this provided further evidence of the mechanism underlying the differential heat tolerance abilities of females and males. The results showed that both hsp23 and hsp70 mRNA expression levels were higher in females than in males from 37.5 to 42°C, while at the extreme temperature of 44°C the hsp70 mRNA level was higher in males than in females. There was no significant difference in hsp90 mRNA expression between females and males under heat shock conditions. Furthermore, the survival rate of females fed hsp23 or hsp70 dsRNA significantly decreased following heat shock at 44°C for 1 h, but male survival rate was not significantly affected. Additionally, the survival rate of both females and males showed no significant change after they were fed with hsp90 dsRNA. Collectively, the present study shows that the optimum mRNA expression of Hsp genes in females promotes a higher survival rate under heat shock conditions; hsp23 and hsp70 play a key role for heat tolerance in females but not in males, and hsp90 shows no significant role in heat tolerance in either females or males. Further, our study indicates that feeding with dsRNA is an effective method by which to study gene function, and the simplicity of this approach opens the way for further research on gene function in different sexes and diverse groups of species.
منابع مشابه
Trade-Offs between Survival, Longevity, and Reproduction, and Variation of Survival Tolerance in Mediterranean Bemisia tabaci after Temperature Stress
The invasive Mediterranean Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) has emerged as one of the most common agricultural pests in the world. In the present study, we examined the cross-tolerance, fitness costs, and benefits of thermal tolerance and the variation in the responses of life history traits after heat-shock selection. The results showed that survival and longevity of Mediter...
متن کاملIncreased Survival and Prolonged Longevity Mainly Contribute to the Temperature-Adaptive Evolutionary Strategy in Invasive Bemisia tabaci (Hemiptera: Aleyrodidae) Middle East Asia Minor 1
With increasing global climate change, analyses of stress-inducing conditions have important significance in ecological adaptation and the biological distribution of species. To reveal the difference in temperature-adaptive strategy between Turpan and Beijing populations of Bemisia tabaci (Gennadius) Middle East Asia Minor 1 (MEAM1) under high-temperature stress conditions, we compared thermal ...
متن کاملThermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes.
The whitefly Bemisia tabaci (Gennadius) causes tremendous losses to agriculture by direct feeding on plants and by vectoring several families of plant viruses. The B. tabaci species complex comprises over 10 genetic groups (biotypes) that are well defined by DNA markers and biological characteristics. B and Q are amongst the most dominant and damaging biotypes, differing considerably in fecundi...
متن کاملImplication of Bemisia tabaci heat shock protein 70 in Begomovirus-whitefly interactions.
The whitefly Bemisia tabaci (Gennadius) is a major cosmopolitan pest capable of feeding on hundreds of plant species and transmits several major plant viruses. The most important and widespread viruses vectored by B. tabaci are in the genus Begomovirus, an unusual group of plant viruses owing to their small, single-stranded DNA genome and geminate particle morphology. B. tabaci transmits begomo...
متن کاملTransient Receptor Potential Is Essential for High Temperature Tolerance in Invasive Bemisia tabaci Middle East Asia Minor 1 Cryptic Species
Temperature is an important factor in affecting population dynamics and diffusion distribution of organisms. Alien species can successfully invade and colonize to various temperature environments, and one of important reasons is that alien species have a strong resistance to stress temperature. Recently, researchers have focused on the mechanisms of temperature sensing to determine the sensing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 214 Pt 5 شماره
صفحات -
تاریخ انتشار 2011